If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2=10X+15
We move all terms to the left:
X^2-(10X+15)=0
We get rid of parentheses
X^2-10X-15=0
a = 1; b = -10; c = -15;
Δ = b2-4ac
Δ = -102-4·1·(-15)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{10}}{2*1}=\frac{10-4\sqrt{10}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{10}}{2*1}=\frac{10+4\sqrt{10}}{2} $
| X+(600-0.2x)=1250 | | b-1/5=8 | | y−1/4=6 | | y−14=6 | | x³+3x²+9x-1=0 | | y=2/10 | | 160/5a=8 | | -7(x+6)=-2x-2 | | 2n−9=–1 | | v2−–13=17 | | w/2+-5=-4 | | x-4+x-1=16 | | 3f−–4=7 | | w2+ 15=19 | | 14+3(4x+1)=5x+7x+10 | | 4(2n-5)=-8n+4(4n-5) | | 2=3j=1 | | 36b-48=4b-4 | | 4(2n–5)=-8n+4(4n–5) | | 35=t-7 | | 35=t+9 | | t-29=54 | | 4=q-2 | | 5/6x-7=1 | | w+19=2 | | 4(2-3t)=3-3t | | r–1=3 | | 12=(x+1)(-3) | | j+11=-2 | | -5(y-10)=-35 | | -2(w+1)=14 | | -20=p-42 |